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Siamese Cooperative Learning for
Unsupervised Image Reconstruction from

Incomplete Measurements
Yuhui Quan, Xinran Qin, Tongyao Pang, and Hui Ji

Abstract—Image reconstruction from incomplete measurements is one basic task in imaging. While supervised deep learning has
emerged as a powerful tool for image reconstruction in recent years, its applicability is limited by its prerequisite on a large number of
latent images for model training. To extend the application of deep learning to the imaging tasks where acquisition of latent images is
challenging, this paper proposes an unsupervised deep learning method that trains a deep model for image reconstruction with the
access limited to measurement data. We develop a Siamese network whose twin sub-networks perform reconstruction cooperatively
on a pair of complementary spaces: the null space of the measurement matrix and the range space of its pseudo inverse. The Siamese
network is trained by a self-supervised loss with three terms: a data consistency loss over available measurements in the range space,
a data consistency loss between intermediate results in the null space, and a mutual consistency loss on the predictions of the twin
sub-networks in the full space. The proposed method is applied to four imaging tasks from different applications, and extensive
experiments have shown its advantages over existing unsupervised solutions.

Index Terms—Image reconstruction, Unsupervised learning, Deep learning, Siamese neural networks.
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1 INTRODUCTION

IMAGE reconstruction from incomplete linear measure-
ments finds its applications in many imaging tasks, such

as medical imaging [1], [2], multi-spectral imaging [3], [4],
and high-speed imaging [5]. It can be formulated as solving
an ill-posed linear inverse problem:

y = Ax+ n, (1)

where A ∈ Cd×D (d � D) denotes the so-called measure-
ment matrix which models the forward acquisition process,
x ∈ RD the latent image to reconstruct, n ∈ Cd the
measurement noise, and y ∈ Cd the collected incomplete
measurements. As the system in (1) is under-determined, a
direct inversion is not unique and is sensitive to measure-
ment noise. Over last decades, regularization has been one
prominent approach to solving ill-posed inverse problems,
which addresses solution ambiguity and noise sensitivity by
imposing certain priors on latent images for reconstruction.
While these regularization-based methods saw their success
in certain applications, e.g., sparsity-based `1-norm regular-
ization for compressed-sensing (CS) medical imaging [6],
[7], the need for more accurate and faster reconstruction
with fewer measurements remains in practice.
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Fig. 1. Natural image reconstruction results with sensing ratio 0.25. The
ISTANet+, MACNet and COAST are supervised methods, while EI and
Ours are unsupervised methods.

In recent years, deep learning has been one main driving
force in many fields, including image reconstruction; see
e.g. [12], [13], [8], [14], [15], [9], [3], [16], [10], [17], [18], [2].
The paradigm of most existing deep learning-based meth-
ods is training a deep neural network (DNN) model over
a paired dataset of latent images and their measurements.
While the resulting models show impressive performance in
terms of both reconstruction accuracy and running-time ef-
ficiency, such an advantage requires access to a large paired
dataset. There are also some weakly-supervised methods
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(e.g. [19]) that utilize unpaired latent images and mea-
surements. Nevertheless, the prerequisite of latent images
still limits their wider applications in many domains, e.g.,
medicine and science, where acquisition of latent images is
challenging. The challenges are multifaceted. For instance,
transient phenomena such as fleeting cellular reactions and
rapid astronomical events, are elusive. Many subjects at
microscopic scales are hard to image with traditional tech-
niques. Some methods, especially in material science, may
alter the very sample under observation. Obstacles like
low signal-to-noise ratios, intricate data processing needs,
ethical and safety concerns in medical scenarios, limited
access to advanced imaging tools, rigorous sample prepara-
tion requirements, and fundamental physical imaging limits
further compound these challenges.

To bypass the challenges raised by the prerequisite of
domain-specific latent images, there has been an increas-
ing interest in leveraging DNN models pre-trained on
the images from another domain; see e.g., plug-and-play
methods [20], [21], [22] and generative methods [23], [24].
However, the performance will not be satisfactory when
the images of the two domains differ much in structure.
For instance, a model trained over natural images in digital
photography may not generalize well to medical images of
internal organs or scientific images of biological molecules.

1.1 Motivation and Aim
Unsupervised deep learning in the absence of ground-truth
(GT) images is receiving increasing attention in many image
reconstruction and recovery tasks. Recent studies [25], [26],
[27], [28], [29], [11] have shown that it is possible to train
a DNN for image reconstruction without using GT images.
The key part is how to mitigate the over-fitting that can
occur when training with only the measurements with noisy
and partial information of GT images. Some methods [25],
[28] require multiple acquisitions of the same image, which
is inconvenient or impossible in practice. There are also
studies [30], [31], [4] employing an untrained DNN as a
generative image prior for image reconstruction, without
using any external latent image in self-supervised learning.
However, in many cases, their performance is not com-
parable to their supervised counterparts. In addition, they
use an online learning scheme which trains different DNN
models for different test samples. Such an online scheme is
computationally overwhelming for large-scale data and not
qualified for real-time applications.

The limitations of the aforementioned unsupervised
deep learning methods, in terms of both reconstruction ac-
curacy and testing-time efficiency, motivated us to develop
an alternative with the following desired features:
1) Training neither on latent images nor on multiple acqui-

sitions of the same image;
2) An offline training scheme that addresses the testing-time

efficiency of online self-supervised learning schemes;
3) Competitive performance against existing supervised

learning-based methods to meet practical needs.
See Fig. 1 for an illustration of the images reconstructed
by the proposed unsupervised deep learning approach and
several existing methods for CS-based image acquisition,
a task to reconstruct an image from a small number of
measurements sensed with some specific sensing matrix [6].

1.2 Basic Idea
Before proceeding, we first introduce some notions and
basics on matrices. Let Im ∈ Rm×m denote the m × m
identity matrix. For a matrix T ∈ CM×N , its conjugate
transpose is denoted by T ∗ ∈ CN×M . Its range space R(T )
and null space N (T ) are defined by

R(T ) , {Tu : u ∈ CN} ⊆ CM , (2)

N (T ) , {u ∈ CN : Tu = 0} ⊆ CN . (3)

For a measurement matrixA ∈ Cd×D with full row rank, its
Moore–Penrose inverse is defined as A† = A∗(AA∗)−1 ∈
CD×d such that AA† = Id. Then, the Euclidean space CD
has the following orthogonal decomposition:

CD = R(A†)⊕N (A). (4)

In other words, any x ∈ CD can be uniquely decomposed
as x = x+ + x⊥ where x+ ∈ R(A†) and x⊥ ∈ N (A).

For a training sample y = Ax + n without the GT x,
it only provides noisy measurements of x in R(A†). Recall
that the training is about tuning the DNN model so that it
can predict x well from y. Thus, there are two questions to
answer when training a DNN using only y.
1) How to handle measurement noise in the training sample
y so that the reconstructed x in R(A†) is accurate?

2) How to train the DNN to reconstruct x⊥ when no infor-
mation of x in N (A) provided by the training sample?
To answer these two questions, we propose a Siamese

network with twin DNNs (MR,MN ) constructed via un-
rolling the proximal gradient iterative algorithm. The twin
DNNs focus on the reconstruction of x in R(A†) and in
N (A), respectively. That is, the outputs of the twin DNNs,
xR and xN are expected to satisfy

xR ≈ x+ u,u ∈ N (A), (5)

xN ≈ x+ v,v ∈ R(A†). (6)

Then, the final prediction is defined by

x̂ = (A†A)xR + (I −A†A)xN , (7)

which will eliminate u,v to have an accurate estimate of x.
The answer to the first question is a self-supervised

data consistency loss, which is the extension of the Recor-
rupted2Recorrupted (R2R) self-supervised Gaussian denois-
ing network [32] from denoising to image reconstruction. It
is shown in this paper that the proposed self-supervised
loss provided a loss equivalent to its supervised counter-
part in the range space R(A†). That is, the proposed self-
supervised loss can well simulate the loss defined on the
noise-free measurementsAx ∈ R(A†). As a result, this loss
enables us to train MR to predict x in R(A†) without the
impact from the measurement noise, despite that only noisy
measurements y = Ax+ n are available

The answer to the second question is motivated by
the Noise2Noise (N2N) training [33], which uses paired
noisy images of the same scene to simulate the training
of a denoiser over noisy/clean image pairs. For the pre-
diction of x⊥ in N (A), we simulate a N2N training on
MN using multiple estimates fromMR. The idea is based
on the observation that the DNN architecture has certain
regularization effect on its output, called deep image prior
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(see e.g. [34], [35]). Then the predictions obtained by MR
can be considered as fine initial estimates with relatively
in-significant error in N (A). In addition, empirically, the
random noise injected into the the inputs of MR in the
R2R loss diversifies the outputs such that the predictions of
MR in two adjacent steps can provide different views of x
with small correlations. Intuitively, we treat the projections
of these predictions onto N (A) as the diverse observations
of x⊥ with weakly-correlated noise and use them as paired
data to trainMN in a N2N manner.

The twin DNNsMR andMN share an optimization un-
rolling network architecture but with two different embed-
ded matrices: a measurement-space projection matrix and
a null-space projection matrix. The weight sharing between
the twin DNNs allow them to cooperate with each other
during training, while the different embedding matrices
make them more effective for image reconstruction in their
own subspaces. To enable better interaction between the
reconstructions from the twin DNNs, i.e., xR and xN , we
introduce a mutual loss that measures the distance between
them for joint training. To conclude, we propose a DNN
with a Siamese structure for cooperative image reconstruc-
tion in two subspaces: R(A†) and N (A). It is trained by
a self-supervised loss with three terms defined only based
on y. which respectively accounts for the reconstruction in
R(A†), N (A), and a fusion in the full image space CD.

1.3 Contributions

This paper proposes an unsupervised deep learning method
for image reconstruction from incomplete measurements,
where only requires unorganized training samples of mea-
surements. There are two technical contributions:
1) A Siamese network for cooperative image reconstruction

from incomplete noisy measurements, defined in an or-
thogonal decomposition of the image space.

2) A self-supervised loss function that allows effectively
training the Siamese network for accurate image recon-
struction, in the absence of latent images.

The experiments on four image reconstruction tasks show
that our proposed unsupervised learning method provides
better performance than existing unsupervised methods
and is computationally more efficient than online self-
supervised (test-time learning) methods. Moreover, the pro-
posed method competes well with recent supervised learn-
ing methods, making it very attractive for real-world appli-
cations where acquisition of latent images is challenging. All
our codes will be published once the paper is accepted.

The preliminary results of this paper appeared in a con-
ference paper [36] which introduced a self-supervised loss
defined in two domains: the measurement domain related
to range space R(A†) and the image domain related to full
space RD . In [36], loss functions defined on the two domains
respectively are both based on an extended R2R loss where
a flipping-sign scheme is used for the noise simulation on
the R2R loss in the image domain. This paper extends the
conference paper [36] in several aspects:
1) A novel Siamese DNN structure using twin sub-networks

embedded with two different measurement matrices for
collaborative prediction in R(A†) and N (A).

2) A self-supervised training loss defined in N (A) which
avoids noise simulation done in the image-space loss
of [36], with a consistency loss between two R(A†) and
N (A) for mutual information fusion.

3) Additional application of the proposed method to hyper-
spectral imaging in the experiments.

Extensive experiments show that the proposed method out-
performs its preliminary version [36] overall, indicating the
significance of the extensions introduced in this paper.

2 LITERATURE REVIEW

There is abundant literature on non-learning-based methods
for image reconstruction from incomplete measurements.
The prominent one is regularization-based methods which
impose some pre-defined image priors on latent images to
guide the reconstruction process in a variational form. Due
to space limitation, the following review on related works
focuses on deep learning-based methods.

Supervised deep learning from paired data Most existing
deep learning-based methods fall into this category, concen-
trating on architecture design. Early studies (e.g. [12]) used
off-the-shelf DNNs. Recent methods (e.g. [37], [13], [20], [8],
[14], [38], [39], [18], [3], [16], [10], [2], [40]) adopted deep
algorithm unrolling to embed measurement physics into the
DNN architecture. It is done by unrolling the computational
scheme of some traditional image reconstruction method
and casting the denoising-related operators into pre-trained
or learnable DNN blocks. The DNN adopted in our method
is also designed based on deep algorithm unrolling.

Some studies [41], [9], [15] constructed DNNs using
a different strategy. One closely-related work is the deep
decomposition network (DDN) proposed by Chen et al. [41],
a light-weight yet efficient DNN performing range-null
space decomposition-based reconstruction with a two-stage
scheme. The DDN showed effectiveness in supervised learn-
ing but cannot be directly applied in our unsupervised
learning scheme. In comparison, our DNN has a Siamese
structure inspired by (4) to facilitate unsupervised learning.
Recently, there is an increasing interest in developing su-
pervised DNNs from different aspects, e.g., improvement
of computational scalability [42], [43], training of universal
models [44], and exploitation of additional sources [45].

Unsupervised deep learning over organized measurement
data To overcome the lack of latent images, a few
methods base the model training on multiple samples of
measurements captured from the same image but via dif-
ferent sensing matrices, e.g., a pair of measurement matrices
are adopted in [27] with a consistency loss, and multiple
measurement matrices are adopted in [28] with an adver-
sarial loss. While multiple acquisitions encode sufficient
additional information of latent images for overcoming the
solution ambiguity in unsupervised learning, this specific
data acquisition manner is of limited practicability.

Unsupervised deep learning over unorganized measurement
data There is an increasing interest in learning with
unorganized samples of measurements only. In [25], [26],
the Stein’s unbiased estimator (SURE) is combined with
the denoiser-approximate message passing (DAMP) net-
work for unsupervised learning. The prediction on R(A†)
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is learned with SURE, while the ambiguity in N (A) is
handled by the inherent implicit regularization from the
DNN structure. In comparison, our method not only uses
a different training loss for R(A†), but also introduces an
additional training scheme for N (A).

Very recently, Chen et al. [11] proposed an effective
framework called equivariant imaging (EI) for unsupervised
image reconstruction, focusing on addressing the learning
ambiguity inN (A). Based on the equivariance presented in
latent images, the idea of EI is to move the component of
the DNN’s prediction in R(A†) of one sample to N (A) by
some transformations such as translations and rotations to
which R(A†) are not invariant. This forms effective pseudo
supervision on N (A) for another equivariant sample. A
noise-robust version of EI, namely REI, is proposed in [46] to
improve the robustness to measurement noise by combining
EI with SURE. Compared with EI and REI, our method
employs a different loss inspired by N2N to reduce the
prediction error in N (A), while EI and REI assume the
equivalence of training data to resolve the ambiguity from
N (A). Also, the collaborative prediction by the Siamese
network structure further reduces noise/error in R(A†)
and N (A). Moreover, the noise-resistant loss function for
the learning on R(A†) of the proposed method is more
computationally effiicent than the SURE loss used in REI
which requires expensive Monte Carlo sampling.

In our preliminary work [36], the R2R-extended loss is
employed for both the treatment of measurement noise in
R(A†) and the treatment of prediction error in the full
image space RD. As the distribution of prediction error is
unknown, a sign-flipping scheme is adopted to simulate
the noise from this unknown distribution. Such a noise
simulation scheme leaves a lot of room for improvement.
In this paper, while still adopting the R2R-extended loss
for handling measurement noise in R(A†), a simpler N2N-
inspired loss is used for partially addressing prediction
error in the complementary null space N (A). Then, the
prediction error is further reduced by using a Siamese DNN
with twin sub-networks that collaborate the predictions in
R(A†) and N (A), together with an additional consistency
loss between them for information refinement in training.
Deep generative learning on a single test sample of measure-
ments The methods [47], [30], [31], [4] in this category use
a DNN with a certain structure to parameterize the latent
image and train it as a generator with some data consistency
loss on the test sample. Van et al. [47] used a regularized
GAN, Pang et al. [30] used a Bayesian DNN with random
weights, Sun et al. [31] used an attentive DNN, and Meng et
al. [4] used an unrolling-based DNN. Different from ours,
these methods suffer from high computational costs, as they
have to train individual DNNs for different test samples.
Siamese learning Siamese DNNs have been extensively
studied for high-level and middle-level vision tasks, often
used with contrastive learning; see e.g. [48], [49]. This paper
is one of the few works to apply Siamese DNNs to low-level
vision tasks, which is for cooperative learning in two spaces.

3 PRELIMINARIES

Before proceeding, we first provide some preliminaries on
two existing unsupervised denoising methods related to our

proposed approach: N2N [33] and R2R [32].
The N2N was proposed to train a denoising DNN using

paired noisy images of the same scene with independent
noise. Given paired noisy images

î = x+ n̂, and ĩ = x+ ñ, (8)

the N2N loss is defined by

LN2N , Eî,̃i‖Fθ(î)− ĩ‖22, (9)

where Fθ denotes the DNN for denoising. Its connection
to the loss in supervised learning defined over noisy/clean
pair (i,x), Eî

∥∥Fθ(î)−x‖22, could be seen by expanding (9):

LN2N , Eî,̃i
[
‖Fθ(î)− x‖22 + 2ñ>Fθ(î) + ‖ñ‖22

]
. (10)

Note that the second term satisfies

Eî,̃i2ñ
>Fθ(î) = 2Ex

[
Eñ,n̂|xñFθ(x+ n̂)

]
= 0, (11)

if ñ and n̂ are conditionally independent given x and
Eñ|xñ = 0. In addition, the last term Eî,̃i‖ñ‖

2
2 is a constant

irrelevant to θ. Therefore, for the pair (î, ĩ) defined by (8)
where n̂ and ñ are conditionally independent given x and
Eñ|xñ = 0, we have then

LN2N = Eî,x‖Fθ(î)− x‖22 + const.. (12)

In other words, the N2N loss for denoising defined over the
pairs of noisy/noisy images can simulate well the loss over
pairs of noisy/clean images seen in supervised learning.

The R2R is inspired by N2N and further relaxes the
requirements on training data, from paired noisy images to
unorganized noisy images. Consider a singe noisy image
i = x+ n, R2R constructs paired noisy images (î, ĩ) via

î = i+D>n′, ĩ = i−D−1n′, (13)

where D can be any invertible matrix (often set to a diago-
nal matrix for simplicity), and n′ denotes simulated noise.
Denote the noise in the generated noisy images î and ĩ by
n̂ = î−x = n+D>n′ and ñ = ĩ−x = n−D−1n′. Suppose
that the simulated noise n′|x and the image noise n|x
are independent and identically distributed (i.i.d.) Gaussian
noise, then n̂|x and ñ|x also follow normal distributions
with zero covariance, i.e., n̂|x and ñ|x are independent.
Thus, the R2R training over the synthesized noisy image
pairs (î, ĩ) mimics the N2N training over a pair of images
with independent noise, which connects to the supervised
loss in the form of (12); see Proposition 1.

Proposition 1 ( [32]). Consider i = x+n, where n|x follows a
zero-mean normal distribution. Suppose n′|x is i.i.d. to n|x. The
R2R loss is defined by

LR2R(θ) , Ei,n′‖Fθ(i+D>n′)− (i−D−1n′)‖22 (14)

for any invertible matrix D and it holds that

LR2R(θ) = Ex,n,n′‖Fθ(i+D>n′)− x‖22 + const. (15)
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4 SIAMESE DNN FOR COOPERATIVE LEARNING

Our proposed approach is based on the well-known Range-
Null orthogonal decomposition.

Definition 1 (Range-Null orthogonal decomposition). For a
sensing matrix A ∈ Cd×D with row full rank, define

PR = A†A, PN = (ID −A†A), (16)

The matrices, PR and PN , are the operators of the orthogonal
projection of CD to two subspaces, R(A†) and N (A), respec-
tively. For any x ∈ CD , there exists an unique decomposition:
x = x+ + x⊥ with 〈x†,x⊥〉 = 0, defined by

x+ = PRx, x⊥ = PNx. (17)

In supervised learning, we can access the pair (y,x) to
have a loss function that measures the reconstruction error.
Then the DNN is trained to minimize that loss so that it
can reconstruct x well from y. In the absence of image x,
the available measurement y = Ax + n only provides the
information of x in R(A†). No information of x in N (A) is
available. In other words, we only have a noisy observation
of x+ while knowing nothing about x⊥. To develop an
effective scheme for the training with the access limited to a
set of y, we need to address two challenges: how to handle
the noise n in y to have an accurate estimate of x+, and
how to regularize the reconstruction of x⊥ in training.

Cooperative reconstruction using Siamese network As the
information of x† and x⊥ is provided differently in y, we
propose to separately reconstruct them in the DNN, yet with
certain interaction between the two estimators. Our solution
is adopting a DNN with Siamese structure, called SiamNet
(Siamese Network), which has twin networks defined in
the complementary spaces (R(A†),N (A)) and cooperating
with each other for the final image reconstruction. See Fig. 2
for the illustration of the proposed SiamNet.
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Fig. 2. Diagram of SiamNet for unsupervised image reconstruction. The
feature channel numbers are displayed below the layers.

The twin DNNs in SiamNet, denoted by (MR, MN ),
share the same network structure as well as the trainable
parameters, but take the inputs in different spaces (i.e. that
captured by different measurement matrices). In a quick
glance,MR andMN cannot be a Siamese pair as the space
of their inputs are different. We address this by using deep
algorithm unrolling for the network architecture design,
which embeds the measurement matrices, PR and PN , into
the twin networks. Concretely, we have

MR(·;ω) : R(A†)→ CD, (18)

MN (·;ω) : N (A)→ CD, (19)

both of which are trained to predict the latent image from
their input.

Implementation of SiamNet via deep algorithm unrolling
Consider a penalized least squares problem:

min
x
‖ȳ − Tx‖22 + f(x), (20)

where f is a regularization term derived from some prior
imposed on latent images. This problem is often solved
by some iterative algorithms. Deep optimization unrolling
forms a CNN by casting the steps related to the regular-
ization term into learnable network blocks. Consider the
proximal gradient method for solving (20):

xn = Proxγf (xn−1 − γT ∗(Txn−1 − ȳ)), (21)

for n = 1, 2, · · · , where x0 = T ∗y, γ ∈ R+ is a hyper-
parameter, and the proximal operator Proxγf (·) is given by

Proxγf (x) , argmin
x′

‖x− x′‖22 + 2γf(x′). (22)

Then we obtain a network M(·;T ) via replacing the prox-
imal operator at each iteration by a residual block with six
convolutional layers, where the middle four are individually
equipped with a rectified linear unit (ReLU). As a result, the
whole network M predicts x from ȳ using a number of
stages. In each stage, it first performs the calculation of (21)
and then passes the result to a residual block; see Fig. 2 for
more details. Finally, the SiamNet is defined by

MR(·) =M(·;ω,PR); MN (·) =M(·;ω,PN ). (23)

In other words, the twin networks in SiamNet are based
on the same unrolling networkM but embedded with two
different measurement matrices respectively, which thus can
handle the measurement data fromPR andPN respectively.

In M(·;T ), the operator proxγf functions in the image
space, and so are those residual blocks in the network. Thus,
their dimensions do not vary according to the measure-
ment matrix T . In addition, the information incorporated
in proxγf is about the assumed or learned image properties
and has nothing to do with T . That is, the physics of T is not
embedded into the learnable part but only the non-learnable
part of the unrolling network. Thus, the learnable modules
can share their weights by the twin DNNs despite that they
handle different measurement matrices: PR and PN .

Remark 1. The SiamNet is a pair of sub-networks with shared
weights. The rationale of such a structure is two-fold: reduction
in model size for alleviating possible overfitting and collaborating
the constructions in two complementary subspaces. Recall that the
learnable blocks in both sub-networks are about neuralizing prox-
imal operators, which learn image priors for removing artifacts
from previous estimates. Thus, the blocks in both sub-networks
should be consistent in terms of their functions, which is ensured
by weight sharing. As shown in the experiments in Section 6.5,
such a structure does bring noticeable performance gain.

5 UNSUPERVISED TRAINING AND INFERENCE

With the ideas discussed in Section 1.2, the following loss
function is proposed for unsupervised training of SiamNet:

LAll , LR + α · LN + β · LC, (24)

where α, β ∈ R+ are two hyper-parameters, LR is the loss
measuring the reconstruction error in R(A†), LN is the
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loss for the reconstruction learning in N (A), and LC is a
mutual consistency loss to enable the interaction between
twin networks for further reduction of solution ambiguity.

Learning image reconstruction in R(A†) via LR The
measurement y = Ax + n provides a noisy measurement
of x+. By the definition of x+, we have

A†y = A†Ax+A†n = x+ +A†n. (25)

In other words, x+ can be constructed by removing the
noise A†n in A†y. Inspired by R2R, we propose the fol-
lowing loss for trainingMR:

LR , Ey,n′‖PRMR(z+ +A†n′)− z+ +A†n′‖22, (26)

where z+ = A†y, and n′ denotes the newly-simulated
noise. Note that the theoretical justification provided in [32]
for Proposition 1 is only applicable to Gaussian noise, as
its proof for the independence of n̂ and ñ is based on the
specific properties of Gaussian noise with zero covariance.
In real-world cases, measurement noise can be correlated
Gaussian or non-Gaussian. Then, the theoretical connection
of the R2R loss to its supervised counterpart does not hold
anymore in such cases. In this paper, we revisit the R2R loss
from a different perspective, extending the applicability of
the R2R loss to the more general noise.

Proposition 2. Consider y = Ax+n. For the loss function LR
defined by (26) where n′|x+ and n|x+ are i.i.d.. Then, we have

LR = Ey,n′‖PRMR(z+ +A†n′)− x+‖22 + const..

Proof. Recall that z+ = A†y = x+ +A†n. Rewrite LR as

Ex+,n,n′‖PRMR(z+ +A†n′)− z+ +A†n′‖22
=Ex+,n,n′‖PRMR(x+ +A†(n+ n′))− x+ +A†(n′ − n)‖22
=Ex+,n,n′

{
‖PRMR(z+ +A†n′)− x+‖22 + ‖A†(n′ − n)‖22

+ 2
(
PRMR(x+ +A†(n+ n′))− x+)>A†(n′ − n)

}
.

(27)
The second term in the last line of (27) is a constant inde-
pendent of the network parameters. As for the third term,
since n|x+ and n′|x+ are i.i.d., by decomposing the joint
distribution and switching n and n′, we can obtain

Ex+En|x+En′|x+

(
PRMR(x+ +A†(n+ n′))− x+)>A†n′

= Ex+En|x+En′|x+

(
PRMR(x+ +A†(n+ n′))− x+)>A†n.

(28)
Thus the third term is zero. Finally, we have

LR = Ey,n′‖PRMR(z+ +A†n′)− x+‖22 + const. (29)

The proof is done.

It is noted that different from [32], the justification of R2R
loss on more general noise is only based on the symmetry of
n and n′, not specific properties of normal distribution. As
the loss defined in Proposition 2 differs from the one defined
in our preliminary work [36], the proof used in [36] needs
to be revised to justify the loss function used in this paper.

Now, Proposition 2 says that LR is an unbiased estima-
tor to the supervised loss defined over GT images. With such
a theoretical guarantee, the training ofM(·;PR) under the
loss LR will lead to an efficient estimator of x+ from its
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Fig. 3. Visualization (t-SNE) of the distribution of {z⊥k }, produced by our
model trained in different epochs. The instances are scattered around
the GT. Their residuals to GT become smaller along the training process.

noisy version A†y, which has comparable performance to
the supervised learning on the range space R(A†).

Learning image reconstruction in N (A) via LN To tackle
the issue that no information of x⊥ is available in training
data, we utilize the intermediate reconstruction result from
MR to form weak supervision for the prediction on N (A).
Concretely, the loss LN is defined as

LN , Ey,n′
1,n

′
2
‖PNMN (z⊥1 )− z⊥2 ‖22, (30)

where z⊥k = PNMR(A†y + A†n′k) and n′k is drawn
from a normal distribution, for k = 1, 2. The motivation
comes from the N2N training [33] which utilizes pairs of
noisy images to mimic the supervised learning over the
noisy/clean image pairs, provided that the noises in each
noisy image pair are i.i.d., as shown in (12).

More specifically, the pair (z⊥1 , z
⊥
2 ) in (30) is generated

byMR and used to mimic the N2N training forMN . With
the pairs of independent random noise (n′1,n

′
2) injected into

the inputs, the corresponding outputs, MR(A†y + A†n′1)
and MR(A†y + A†n′2), are likely to have weak correla-
tion, due to high non-linearity and redundancy of a DNN-
based mapping. Therefore, one can have many instances
of z⊥1 , z

⊥
2 whose residuals to x⊥ have sufficient statistical

independence. By viewing z⊥1 , z
⊥
2 as the noisy versions

of x⊥ and their residuals as noise, the loss LN coincides
with LN2N and thus can approximate the supervised loss
in N (A) well when correlation of the residuals of z⊥1 , z

⊥
2

to x⊥ are sufficiently weak. It is empirically observed the
assumption on the weak correlation holds true. See Fig. 3
for a demonstration.

Improvement via LC The mutual consistency loss LC
measures the distance between the estimates of two DNNs:

LC , Ey‖MR(z+)−MN (z⊥)‖22, (31)

where z⊥ = PNMR(A†y). In the ideal case, LR and LN
approximate the supervised training in R(A†) and N (A)
respectively. Suppose the training under these two losses
leads to perfect reconstruction in R(A†) and N (A), i.e.

MR(z+) = x+ u,u ∈ N (A), (32)

MN (z⊥) = x+ v,v ∈ R(A†). (33)

Then we have that

MR(z+)−MN (z⊥) = u− v. (34)
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Minimizing (31) yields u − v = 0 and thus u = v = 0
due to u ⊥ v. In other words, the loss LC allows the twin
networks in SiamNet to interact with each other, so as to
further reduce the reconstruction error during learning.
Inference Given a sample of measurements y for test, the
image reconstruction is done by

x∗ = PRMR(A†y) + PNMN (PNMR(A†y)). (35)

That is, the SiamNet first reconstructs an image from z via
MR, then appliesMR to refine the null-space component,
and finally infers the image via fusing the range-space and
null-space components fromMR andMN respectively.

Remark 2. Our approach is readily applicable to test-time model
adaptation, rooting in the self-supervised nature of the loss func-
tion LAll. That is, as LAll can function without using the GT, it
can be directly employed for model fine-tuning on a test sample.

6 PERFORMANCE EVALUATION

The experiments are conducted with four imaging applica-
tions: CS-based acquisition for natural images with Gaus-
sian measurements, CS-MRI (magnetic resonance imaging)
with Fourier measurements, sparse-view computed tomog-
raphy (CT) imaging with CT measurements, and hyperspec-
tral (HS) imaging with snapshot measurements.

In the training of SiamNet, we initialize the ρ by 0.5, all
convolution kernels by Xavier [50], and all biases by 0. The
α, β in LAll of (24) are set to common values such that the
magnitudes of LR, LN , LC are at the same order. Concretely,
they are fixed to α = 0.1, β = 0.05 through all settings. The
injected noise n′ in LR is drawn from the normal distri-
bution N(0, 2

255I) when the measurement noise is little. For
Gaussian noise, it is drawn from the distribution of measure-
ment noise. For Poisson noise, the injected noise is generated
approximately by n′ = y′ − y,y′ ∼ Poissonγ(y), which
works fine empirically. The n′1,n

′
2 in LN are drawn from

N(0, 2
255I). The Adam optimizer is applied with learning

rate 10−4. Same as many existing works, for each measure-
ment matrix we train an individual model of SiamNet. To
simulate a realistic unsupervised learning setting, through-
out all experiments, for each latent image of a given dataset,
we only generate one sample of measurements for training.

The results of compared methods through all experi-
ments are quoted from existing works whenever possible,
or produced by officially released codes/models otherwise.
For the closely-related work EI [11] and REI [46], we re-
placed its original U-Net with one of the twin networks
in our SiamNet and retrained it using the same training
samples as ours for better results. The default random shift
is used as the EI transformations during its training. See
supplemental material for more details on how the results of
the compared methods are obtained. The reconstruction per-
formance is evaluated by peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM).

6.1 Evaluation on CS-based Image Acquisition
Experimental settings of image acquisition vary in existing
works. Following the setting of [12], [8], the sensing ma-
trix applied to image blocks is generated by entry-wisely
sampling from i.i.d. normal distribution with subsequent

TABLE 1
Mean PSNR(dB)/SSIM of reconstructed images in natural image

acquisition. The best results among all compared methods and among
all unsupervised methods are boldfaced and underlined respectively.

Method BSD68 Set11
r = 0.4 r = 0.25 r = 0.1 r = 0.4 r = 0.25 r = 0.1

no
is

el
es

s
ca

se

DAMP 28.17/.79 25.63/.70 21.94/.52 33.56/.93 28.46/.85 22.64/.60
ISTANet+ 32.17/.92 29.29/.85 25.29/.70 36.02/.96 32.44/.92 26.49/.80

NNet 28.84/.85 26.42/.78 23.44/.64 29.51/.85 26.57/.78 22.99/.66
DPANet? 31.33/.91 29.00/.83 25.97/.61 35.04/.95 31.74/.92 26.99/.84

SLPI? 30.72/.88 28.27/.81 24.72/.66 33.73/.93 30.42/.89 25.02/.75
MACNet?31.47/.91 29.42/.85 25.80/.70 35.34/.95 32.91/.92 27.68/.82
AMPNet? 32.81/.92 29.86/.86 25.33/.70 36.71/.96 32.90/.93 27.35/.82
FISTANet 32.25/.92 29.18/.85 25.09/.69 36.24/.95 32.60/.93 26.94/.81
COAST? 32.93/.93 30.07/.87 26.28/.74 37.13/.96 33.85/.93 28.69/.86

CS-DIP 30.82/.87 27.87/.80 24.95/.69 33.44/.92 31.42/.91 27.34/.83
BNN 31.28/.90 28.63/.84 25.24/.71 35.71/.95 32.30/.92 27.49/.83

L-SURE 31.84/.90 28.86/.84 23.15/.65 33.19/.94 31.25/.90 24.92/.65
EI 31.68/.90 28.42/.82 23.24/.63 35.46/.95 31.01/.90 22.74/.64

DDSSL? 32.10/.80 29.12/.85 25.41/.70 35.89/.85 32.26/.92 26.80/.81
SiamNet 32.48/.92 28.86/.83 25.93/.72 36.41/.95 32.42/.92 27.28/.83

SiamNet? 32.68/.92 29.87/.86 26.00/.72 36.65/.96 33.22/.93 27.81/.84

no
is

y
ca

se

DAMP 26.55/.72 24.87/.65 21.70/.51 29.25/.86 26.35/.80 20.84/.58
ISTANet+ 28.98/.83 27.26/.77 23.86/.60 31.09/.89 29.20/.86 24.55/.70
DPANet? 28.98/.84 27.24/.76 24.34/.63 30.01/.89 29.25/.86 25.21/.75

SLPI? 28.47/.83 26.91/.75 24.25/.67 30.57/.89 28.71/.78 24.51/.71
MACNet?28.92/.84 27.57/.78 24.63/.65 30.34/.89 29.31/.86 25.56/.76
AMPNet? 29.12/.84 27.51/.78 24.57/.64 31.11/.90 29.34/.86 25.31/.75
FISTANet 28.53/.82 27.30/.77 24.34/.63 30.64/.88 29.37/.86 24.92/.74
COAST? 28.98/.83 27.56/.77 24.86/.67 31.09/.89 29.50/.87 25.84/.78

CS-DIP 25.24/.64 24.07/.59 22.46/.51 28.87/.83 27.36/.79 24.19/.68
BNN 28.13/.81 26.47/.75 23.79/.64 30.39/.88 28.67/.84 25.23/.76

L-SURE 27.60/.77 26.85/.73 23.55/.60 29.81/.84 28.35/.82 23.17/.64
REI 28.04/.79 27.04/.75 22.32/.60 28.99/.81 28.08/.81 22.26/.66

DDSSL? 28.37/.80 27.32/.76 24.72/.66 31.42/.90 29.19/.86 25.48/.74
SiamNet 28.58/.81 27.39/.77 24.81/.67 31.14/.90 29.28/.86 25.85/.78

SiamNet? 28.65/.82 27.64/.78 24.91/.68 31.49/.91 29.52/.87 25.86/.78

row-wise orthogonalization. The sampling ratio r = d
D is

set to 0.4, 0.1, 0.25 respectively. The dataset of image blocks
(33×33) from [12] is used to form the training samples of
measurements. Both noiseless setting and noisy setting are
considered. In the noisy case, the measurements within pixel
range [0, 255] for both training and test are contaminated by
the additive Gaussian white noise drawn from N(0, 10

255 ).
For SiamNet, we use 20 blocks and 500 epochs.

The BSD68 [51] and Set11 [8] are used as the test datasets.
Each image on the datasets is cropped into non-overlapping
blocks to generate measurements. The image blocks recon-
structed from these measurements are concatenated back as
an image for comparison to GT. Recently, there are some
studies [18], [9], [15] using full images instead of image
blocks for training, so as to reduce the block artifacts in
reconstruction caused by non-overlapping block partition.
For a fair comparison to those methods, we also train
another model of SiamNet on the measurements of those
full images of [18], with the same training strategy as before.

For comparison, we select DAMP [37], ISTANet+ [8],
NNet [52], DPANet [15], SLPI [22] MACNet [9], AMP-
Net [18], FSTANet [2], COAST [10], CS-DIP [47], BNN [30],
L-SURE [25], EI [11], REI [46] and DDSSL [36]. Note that the
DDSSL model without test-time adaption is used and the
unrolled block number in its DNN is set to the same as ours
for a fair comparison. The quantitative results are listed in
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ISTANet MACNet COAST L-SURE EI/REI DDSSL SiamNet Ground Truth

Fig. 4. Images reconstructed by selected methods on a sample image from BSD in natural image acquisition with sampling ratio 0.10 in the noiseless
case (upper row) and noisy case (bottom row).

ISTANet MACNet COAST L-SURE EI/REI DDSSL SiamNet Ground Truth

Fig. 5. Images reconstructed by selected methods on a sample image from Set11 in natural image acquisition with sampling ratio 0.25 in the
noiseless case (upper row) and noisy case (bottom row).

Table 1, where we mark the models trained with full images
by ?. With the powerful data adaptivity of deep learning,
SiamNet significantly outperformed DAMP, the only non-
learning method among the compared ones.

The CS-DIP, BNN, L-SURE, EI/REI and DDSSL are
unsupervised reconstruction methods. Both SiamNet and
SimaNet* outperformed CS-DIP and L-SURE by a large
margin, while outperforming BNN and EI/REI noticeably,
through all the settings. The inferior performance of EI/REI
may be caused by the insufficient equivariance existing in
training images. Particularly, EI did not perform not well
at the low sampling ratio r = 0.1, as the information of
the image in range space is too little for EI/REI to train the
null-space reconstruction. In addition, the PSNR advantage
of SiamNet over EI/REI is enlarged for noisy data, which
shows the effectiveness of our proposed noise-aware self-
supervised loss effectiveness. Further, SiamNet? also out-
performed DDSSL? across all settings, which demonstrated
the improvement brought by the extensions in this paper.

In comparison to the supervised methods, SiamNet per-
formed much better than some of them (e.g. NNet), and it
competed well against those recent methods, e.g., DPANet,
MACNet, AMPNet and FISTNet. Compared with the top
performer in supervised methods, COAST, there is a per-
formance gap for SiamNet, but not dramatic, e.g., no more
than 0.3dB in PSNR in half cases. See also Fig. 5, 4 for
the visual inspection on the reconstruction results of some

selected methods. In summary, the results in natural image
acquisition have demonstrated the effectiveness of SiamNet.

6.2 Evaluation on CS-MRI
This experiment adopts the setting used by [53], [30]. The
sensing matrix is defined as the down-sampling on Fourier
domain with some predefined down-sampling pattern. The
measurement noise is synthesized by generating a Gaussian
white noise in image domain which is then multiplied by
the sensing matrix. Two types of down-sampling patterns
of sampling ratio r = 1/5, 1/4, 1/3 respectively are used:
Gaussian patterns and radial patterns. The MR images
from Alzheimer’s Disease Neuroimaging Initiative are used
for both training and test. The standard deviation of the
Gaussian noise is set to 10% of the maximum pixel value
of the MR image. For SiamNet, we set the block number
to 12 and the epoch number to 2000. The 300 samples of
measurements generated from 300 MR images are used for
unsupervised learning. The test is done on 21 MR images.

The proposed method is compared with SparseCS [7],
SNALE [53], ADMMNet [14], DDN [41], MACNet [54], CS-
DIP [47], BNN [30], EI [11] and DDSSL [36]. The DDSSL
model without test-time adaption is used for a fair com-
parison. The quantitative results are listed in Table 2. Our
SiamNet noticeably outperformed the non-learning method
SparseSC and other unsupervised learning methods includ-
ing CS-DIP, BNN, EI and DDSSL, across all settings.
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Ground Truth A†y ADMMNet MACNet BNN EI DDSSL SiamNet

Fig. 6. Visualization of point-wise error maps of selected methods in MRI with a radial mask of sampling ratio 1/4 in the noisy case.

TABLE 2
Mean PSNR(dB)/SSIM of reconstructed images in MRI. The best
results among all compared methods and among unsupervised

methods are boldfaced and underlined respectively.

Method Gaussian Pattern Radial Pattern
r = 1/5 r = 1/4 r = 1/3 r = 1/5 r = 1/4 r = 1/3

SparseCS 24.97/.51 24.92/.49 24.91/.47 25.96/.61 26.50/.60 26.50/.60
SNALE 25.97/.67 26.15/.67 26.41/.62 25.98/.68 26.38/.66 26.70/.65
ADMMN. 25.42/.61 25.84/.60 26.14/.56 25.44/.73 25.96/.61 26.50/.60
DDN 29.94/.84 30.91/.84 31.31/.85 29.75/.82 30.92/.85 31.31/.85
MACNet 30.81/.89 30.92/.90 31.74/.91 30.07/.86 30.70/.85 31.93/.92

CS-DIP 23.90/.63 24.72/.72 25.53/.70 23.42/.63 24.89/.73 25.36/.75
BNN 29.17/.86 29.20/.86 29.46/.87 28.38/.84 29.47/.87 29.58/.86
EI 29.10/.71 29.82/.72 29.96/.72 29.67/.74 29.71/.75 30.12/.77
DDSSL 30.26/.85 30.65/.86 30.87/.86 30.16/.85 30.62/.86 30.66/.85
SiamNet 30.94/.90 31.23/.91 31.55/.90 30.66/.89 30.96/.90 31.78/.91

In comparison to the supervised learning-based meth-
ods, the SiamNet competes well against the top performer,
i.e. MACNet, and even outperformed it on some settings.
Such an advantage comes from both the effectiveness of our
unsupervised training scheme and the cooperative architec-
ture of SiamNet. See Fig. 6 for the visualization of point-
wise reconstruction error maps of some selected methods.
To conclude, both the quantitative and qualitative results
have demonstrated the effectiveness of our method.

6.3 Evaluation on Sparse-View CT Imaging

The experiment follows the protocol of [46]. The sensing
matrix A is defined based on a nonlinear forward model
A = I0e

−randon(x) with Radon transform where I0 = 105

denotes X-ray source intensity. The filtered back projection is
used to approximate A†. The evaluation is conducted with
the CT100 dataset [55] which consists of the middle slice
of 100 CT images of size 128×128 taken from 69 different
patients. The measurements of 90 samples are used for
training and the remaining ones are for test. We evaluate
the noiseless case and noisy cases respectively. The setting
of the noisy case follows [46]. Considering quantum and
electronic noise are two major noise sources in X-ray CT
scanners and for normal clinical exposures, the measure-
ments are modeled as the sum of a Poisson distribution
representing photon counting statistics and an independent

Gaussian distribution representing additive electronic noise:
y = z + n where z ∼ Poisson(Axγ ) and n ∼ N (σI)
with γ = 1 and σ = 30. The injected noise for LR is
also generated as a Poisson-Gaussian mixture. The hyper-
parameters of SiamNet are set the same as that in MRI.

The proposed method is compared with FBP [56], FIS-
TANet [2], CS-DIP [47], BNN [30], EI [11], REI [46] and
DDSSL [36]. The DDSSL model without test-time adaption
is used for a fair comparison. See Table 3 for a quantitative
comparison. The SiamNet still leads to better reconstruc-
tion than the unsupervised learning-based methods CS-
DIP, BNN, EI, REI and DDSSL in the noisy setting. In
the noiseless setting, SiamNet performs slightly worse than
DDSSL with a minor PSNR gap of 0.03dB, while much better
than CS-DIP, BNN and REI. In addition, its performance is
close to that of FISTANet, a supervised trained DNN. See
Fig. 7 for the point-wise reconstruction error maps of the
compared methods, where SiamNet achieved higher visual
quality than other unsupervised learning-based methods.

TABLE 3
Mean PSNR (dB)/SSIM of reconstructed images in CT imaging. The
best results among all compared methods and among unsupervised

methods are boldfaced and underlined respectively.

Noisy FISTANet CS-DIP BNN REI DDSSL SiamNet

No 41.75/.984 38.94/.971 39.87/.973 40.64/.971 41.35/.979 41.32/.981
Yes 36.15/.923 28.17/.724 29.87/.764 34.82/.916 35.27/.919 35.60/.921

6.4 Evaluation on HS Imaging

We follow [16] for the experimental setting. The measure-
ment matrix corresponds to a coded aperture snapshot
spectral imaging system, capturing a three-dimensional HS
image into a two-dimensional snapshot via mixing different
wavelength signals modulated by a physical mask and a
disperser. For a K-band HS image, the measurement matrix
is composed by concatenating K shifted diagonal matrices:
A = [S1(diag(a1)), ...,SK(diag(aK))], where SK is a row-
wise shifting operator with the offset determined by the
system’s dispersion characteristics, ak(i) = C(pi, λk)h(λk)
denotes the element corresponding to the spatial position
pi and wavelength λk, C(·, ·) represents the spatial-spectral
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Ground Truth A†y FISTA CS-DIP BNN REI DDSSL SiamNet

Fig. 7. Visualization of point-wise error maps of compared methods in CT imaging.

Reference/A†y TSA-Net DGSMP DTLP SiamNet Ground Truth

Fig. 8. Visualization of reconstructed HS images of selected competitive methods in hyperspectral imaging, in terms of 2/28 spectral channels.

modulation pattern determined by the coded aperture, and
the function h(·) represents the spectral filter response func-
tion accounting for the spectral encoding in the system.
The CAVE dataset [57] is used for training and the KAIST
dataset [58] consisting of 10 scenes of spatial size 256×256 is
used for test. Both the training and test data have 28 spectral
bands ranging from 450nm to 650nm. For training SiamNet,
we use the same hyper-parameters as that in CS-MRI.

The methods for the comparison with SiamNet include
HSSP [59], DNU [3], TSANet [17], DGSMP [16], DTLP [60]
and EI [11] and DDSSL [36]. The DDSSL model without test-
time adaption is used for a fair comparison. The quantitative
results are listed in Table 4. See also Fig. 8 for a visual incep-
tion of the reconstructed HS images. While the SiamNet has
a certain performance gap from DTLP, the top-performing
supervised DNN, it performs better than other supervised
DNNs including HSSP, DNU, TSANet and DGSMP. In com-
parison to the unsupervised competitors EI and DDSSL,
the SiamNet outperformed them noticeably. Particularly,
DDSSL does not work well in this experiment, which may
be due to the fact that its sign-flipping-based scheme failed
to provide good samples from the distribution of prediction
error for R2R in the full image space. In contrast, the N2N-
inspired loss adopted in the proposed method does not
require sampling the unknown distribution of prediction
error. To conclude, all above results have demonstrated the
effectiveness of the proposed method.

TABLE 4
Mean PSNR (in dB; upper row) and SSIM (bottom row) of

reconstructed images in HS imaging. The best results among all
compared methods and among unsupervised methods are boldfaced

and underlined respectively.

HSSP DNU TSANet DGSMP DTLP EI DDSSL SiamNet

30.35 30.74 31.46 32.63 33.98 30.91 30.15 33.24
0.85 0.86 0.89 0.92 0.94 0.87 0.82 0.92

6.5 Ablation Study

Loss function The following ablation studies on the loss
function are conducted, with results summarized in Table 5.

1) We train the network MR using only the loss LR and
use its output for prediction. The resulting performance
is noticeably worse, which verifies the benefit of the dual-
space cooperative learning in SiamNet. Note that the
resulting performance is not very bad. This is probably
because the MR trained with LR can predict well on
R(A†) and meanwhile there is certain implicit regular-
ization effect from the network architecture so that the
ambiguity caused by N (A) is moderately reduced.

2) We replace the loss LR by the one similar to DIP [34],
[35]: L−R = ‖A†y −MR(A†y)‖22, and retrain SiamNet.
The performance drops significantly, which is due to
the reconstruction in R(A†) becomes worse and it also
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invalidates the training ofMN via LN . Such results have
demonstrated the effectiveness of LR.

3) We retrain the SiamNet by removing the loss LC. The
performance has a certain drop, which implies that LC
can moderately reduce solution ambiguity in training.

4) We retrain the SiamNet in a supervised manner: the
networks MR,MN are supervised by the range-space
and null-space components of the GT image respectively,
using the same paired data as those supervised methods.
Only minor improvement is observed, which indicates
the effectiveness of our unsupervised training scheme.

TABLE 5
Results of ablation studies on loss functions in terms of mean

PSNR(dB), tested in MRI.

Method Gaussian Pattern Radial Pattern
r = 1/5 r = 1/4 r = 1/3 r = 1/5 r = 1/4 r = 1/3

Train with LR 29.98 30.25 30.48 29.64 30.49 30.91
Train with L−R 20.61 20.77 20.87 19.71 19.83 19.98
Train w/o LC 30.76 31.04 31.33 30.18 30.74 31.39
Supervised 31.23 31.45 31.86 30.94 31.54 31.95
Original 30.94 31.23 31.55 30.66 30.96 31.78

DNN structure We also conduct ablation studies on the
SiamNet’s structure, with results summarized in Table 6.
1) We evaluate the performance of using the output ofMR

andMN respectively as the reconstruction result. A no-
ticeable improvement is observed from the combination
of two twin networks over the single one, which verified
the effectiveness of our inference scheme for SiamNet.

2) We disable weight sharing between MR and MN and
retrain the model. We can see that weight sharing leads
to a remarkable performance improvement. Recall that
the benefits of weight sharing are two-fold: reduction of
parameter number and additional regularization. Both
are important for resolving the possible overfitting in
unsupervised learning. Note that both twin DNNs con-
tain the learnable modules acting as proximal operators
in the unrolled algorithm, whose roles are to remove
artifacts from the image estimated in the previous stage.
Thus, they may share image features/priors to benefit
each other. As a result, weight sharing of the twin DNNs
brings certain regularization and robustness.

TABLE 6
Results of ablation studies on network structure in terms of mean

PSNR(dB), tested on natural image acquisition.

Method σ = 0 σ = 10
r = 0.4 0.25 0.1 r = 0.4 0.25 0.1

Inference fromMR 32.23 29.43 25.81 28.16 27.34 24.43
Inference fromMN 31.66 29.12 25.73 28.03 27.16 24.22
Nonshared weights 31.01 28.12 24.98 28.14 27.21 24.37

Original 32.68 29.87 26.00 28.67 27.73 24.92

Reconstruction performance in R(A†) and N (A) By
projecting the reconstructed images onto R(A†) and N (A)
using PR and PN respectively, we assess the reconstruc-
tion performance in both the subspaces, in terms of mean
squared error (MSE). Table 7 lists these results of SiamNet

of its leading competitor DDSSL. As the measurements con-
tain no image information in N (A), both methods exhibit
higher MSE in N (A) than in R(A†). When the sampling
ratio increases, the dimension of N (A) decreases, lead-
ing to decreased MSE in N (A). Conversely, the MSE in
R(A†) increases due to the impact from the amplification
of noise A†n. Importantly, the results indicate that SiamNet
consistently produces less reconstruction error across both
subspaces, demonstrating its advantage over DDSSL.

TABLE 7
Reconstruction MSE in R(A†) and N (A) in noisy CS-based natural

image acquisition.

Method
MSE in R(A†) MSE in N (A)

r = 0.1 r = 0.25 r = 0.4 r = 0.1 r = 0.25 r = 0.4

DDSSL 4.84 8.37 12.22 216.83 70.33 37.49
SiamNet 4.11 6.66 11.13 187.45 59.03 33.35

6.6 Complexity Comparison

The model size comparison in terms of the number of model
parameters is given in Table 8 for different methods in
natural image acquisition. The model size of our SiamNet
is in the middle level among all the compared methods.
Since we use EI with our network architecture, the model
size of EI is the same as that of SiamNet. For CS-MRI,
sparse-view CT imaging and HS imaging, the model sizes
of SiamNet are the same, and thus we compare it with other
models in all those three tasks together See Table 9 where
our SiamNet shows good performance while maintaining a
moderate number of parameters. See also Table 10 for the
comparison on inference time. The time cost of our SiamNet
is also in the middle level among all compared methods and
is much less than BNN, an online self-supervised method.

TABLE 8
Number of parameters (Billion) of different models in CS-based natural

image acquisition.

ISTANet+ NNet DPANet? SLPI MACNet? AMPNet? FISTANet
0.33 7.75 9.32 0.66 0.47 0.58 0.08

COAST? CS-DIP BNN L-SURE DDSSL EI SiamNet

1.12 2.21 2.54 0.37 1.11 0.93 0.93

TABLE 9
Number of parameters (Billion) of different models in MRI, sparse-view

CT imaging, and HS imaging.

DDN MAC-Net FISTANet DNU TSANet DGSM
35.08 0.47 0.08 0.41 87.66 3.76

DTLP CS-DIP BNN DDSSL EI SiamNet

3.19 2.21 2.54 0.52 0.44 0.44

6.7 Application to Test-Time Adaption

As mentioned in Remark 2, our approach is also applicable
to test-time adaption, with a similar spirit to [36]. This is
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TABLE 10
Per-sample inference time and PSNR on BSD68 with sampling ratio

0.25. The test is run on a single NVIDIA RTX 3090 GPU.

Metric ISTANet+ DPANet MACNet COAST BNN L-SURE SiamNet

Time(s) 0.026 0.043 0.164 0.050 1318 3.027 0.068
PSNR(dB) 29.29 29.00 29.42 30.07 28.63 28.86 29.87

done by model fine-tuning on each test sample via the loss
LAll of (24) with the same hyper-parameters as those used
in training. Table 11 shows the results of SiamNet with
and without test-time adaption (denoted by “TA”) in noisy
setting respectively. The DDSSL is used for comparison, and
we also report the results of both its adapted and non-
adapted version. For a fair comparison, we set the iteration
number of test-time adaption of SiamNet the same as that
of DDSSL. We can see that the test-time adaption further
improves the performance of SiamNet. Interestingly, the
performance of SiamNet without adaption is already close
to that of DDSSL with adaption. After adaption, SiamNet
performs better than the adapted DDSSL. The overall im-
provement of SiamNet and DDSSL via test-time adaption
is very close to each other, which is 0.44dB vs. 0.55dB in
CS-MRI and 0.57dB vs. 0.46dB in natural image acquisition.

TABLE 11
PSNR(dB) comparison of DDSSL and SiamNet in MRI and natural

image acquisition w/o or w/ test-time adaption, under the noisy settings.

Method
MRI (Radial Pattern) CS acquisition on Set11

r=1/5 r=1/4 r=1/3 r=0.4 r=0.25 r=0.1

DDSSL 30.16 30.62 30.66 31.42 29.19 25.48
DDSSL-TA 30.44 31.04 31.68 32.05 29.53 26.13

SiamNet 30.66 30.96 31.78 31.49 29.52 25.86
SiamNet-TA 31.03 31.39 32.30 32.06 29.97 26.48

Figure 9 illustrates the PSNR increment against the num-
ber of iterations during test-time model adaptation. Notably,
while SiamNet and DDSSL show similar PSNR increment
trends, SiamNet exhibits a marginally faster speed. More-
over, in the early stage, the performance of SiamNet notice-
ably surpasses that of DDSSL. Remarkably, even without
adaptation, SiamNet competes effectively with the adapted
DDSSL. Moreover, as shown in Table 12, when both meth-
ods use the same number of iterations, the adaptation time
required by SiamNet takes roughly 60% of that required
by DDSSL. These results highlight the superior efficiency
of SiamNet over DDSSL in test-time model adaptation.
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Fig. 9. Performance curves against the number of iterations during
model adaptation for CS-MRI (left) and CS image acquisition (right).

TABLE 12
Per-sample adaption time (seconds) of DDSSL and SiamNet in two

applications with noiseless settings.

Method
CS-MRI (Radial pattern) CS-Acquisition (Set11)
r=1/5 r=1/4 r=1/3 r=0.4 r=0.25 r=0.1

DDSSL 14.4 14.5 14.7 51.2 51.5 51.6
SiamNet 8.5 8.6 8.6 31.4 31.8 31.7

6.8 Uncertainty Quantization

In both scientific and medical imaging, uncertainty quan-
tification on reconstructed images is desired. With our ap-
proach, uncertainty quantification can be straightforwardly
done by determining the point-wise standard deviation
of the results reconstructed using randomized noise re-
corruption. See Fig. 10 for two demonstrations in CS-MRI
and CS-based image acquisition respectively. Initially, we
produce 50 image estimates by re-corrupting the input by
random noise in a manner consistent with our training
process. Subsequently, we compute the uncertainty map
using the pixel-wise standard deviation across these esti-
mates. We can see that flatter areas typically show lower
uncertainty, whereas regions with more-complex structures,
such as edges and textures, exhibit higher uncertainty.

CS-MRI CS-based image acquisition

Fig. 10. Uncertainty map visualization on two cases. Left: CS-MRI with
a sampling rate r=1/4 and radial pattern under noisy condition; Right:
CS-based natural image acquisition with r=0.25 under noisy condition.

7 CONCLUSION

In contexts such as medical and scientific imaging, where
GT images can be scarce, sub-optimal or compromised in
quality, unsupervised learning emerges as a vital comple-
mentary approach to traditional deep supervised learn-
ing. This paper introduced an unsupervised deep learn-
ing methodology for image reconstruction from incomplete
measurements. Our method leverages a self-supervised
training paradigm on an unrolling-based Siamese DNN, ad-
dressing the inherent ill-posedness with two self-supervised
loss functions and a mutual consistency loss. We validated
the effectiveness and efficiency of our method across four
imaging tasks. In future, we would like to extend our
approach to handle unknown noise and other inverse prob-
lems, as well as combine it with supervised learning to
develop semi-supervised image reconstruction methods.
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